Posted on: | Posted in: Case Studies.

Schneider Electric's Solar Microgrid System Powers a Pre-school in Puerto RicoA year after hurricane Maria, many businesses in Puerto Rico have installed microgrids to assist them in case of an emergency.

In March 2018, AG Group Inc. hosted a training event at their facility. They invited Wholesale Electric and Schneider Electric to provide the latest information on Schneider Electric’s microgrid product line, including the ConextTM XW+, and the ConextTM MPPT 80 600 family of products.

AG Group Inc. designed and installed one such microgrid in a pre-school, where they collaborated with Wholesale and Schneider Electric from the very beginning.

About 30 kids attend the pre-school, which is required by the government to maintain a standard of care. Their main priority for this project was food safety, as they prepare meals for the kids and refrigeration is critical.

This system has roughly 16KW of solar array, with four ConextTM MPPT 80 600s, three ConextTM XW+ 6848s, and 57Kw-H of storage.

During the commissioning, the system was tested to operate the pre-school during a full power outage and the systems performed as per specifications. This test included three large air conditioners, as well as all other appliances on site.

“It was a wonderful opportunity to be present for this microgrid commissioning. It is not often that I get to witness the full project cycle, from product training, to design review, to the final step of commissioning. I am very proud of our involvement in this project,” said Sandra Herrera, Applications Engineer at Schneider Electric.

Wenn die Solaranlage eines Kunden stillsteht, ist der Installateur gefragt. Leider fressen aufwändige Fehlerdiagnosen, Anfahrten zum Kunden und Reparaturen vor Ort oft Zeit und Geld. Deshalb machen wir mit dem kostenlosen Rundum-Service Smart Connected Schluss mit langen Stillstandzeiten und hohem Service-Aufwand. Hier zeigen wir, wie sich der Service für Installateure und deren Kunden rechnet.

SMA Wechselrichter stehen für Qualität und Zuverlässigkeit. Wie jedes technische Gerät können natürlich auch hochwertige Wechselrichter einmal ausfallen – aus welchen Gründen auch immer. Produziert die Solaranlage dann keinen Strom mehr, ist der Aufwand für Installateure meist hoch. Und dem Anlagenbetreiber entstehen Verluste durch die entgangene Einspeisevergütung, fehlenden Eigenverbrauch und den zusätzlichen Netzbezug.

Diese Verluste wiegen natürlich umso höher, je länger der Fehler unentdeckt bleibt. Unter Umständen entdeckt der Anlagenbetreiber erst auf der nächsten Abrechnung, dass etwas nicht stimmt. Bei Standardanlagen kann es also bis zu 100 Tage dauern, bis die nächste Rechnung eintrifft und der Eigentümer feststellt, dass seine Anlage nicht funktioniert hat.

So smart ist SMA Smart Connected

Es ist daher extrem wichtig, dass der Ausfall des Wechselrichters möglichst frühzeitig entdeckt und dann schnell behoben werden kann. Mit unserem kostenfreien Service SMA Smart Connected können Installateure hier richtig punkten. Denn damit dauert es nur rund fünf Tage, bis die Anlage des jeweiligen Kunden wieder funktionsfähig ist. Wie das geht?

Mit SMA Smart Connected überwachen wir die Wechselrichter automatisch und rund um die Uhr. Denn warum sollte man wertvolle Zeit mit langwierigen Diagnosen verschwenden, wenn wir aus langjähriger Erfahrung längst wissen, woran es liegt?

Mit dieser automatischen Monitoring-Lösung haben wir jede Unregelmäßigkeit sofort auf dem Schirm, analysieren das Problem und schicken umgehend eine entsprechende Diagnose. Das erspart die zeitaufwändige Ursachenforschung vor Ort und Probleme können mit der gelieferten Lösung schnell behoben werden. Ein weiterer wesentlicher Vorteil: Der Standort muss nur einmal aufgesucht werden, was zusätzlich Zeit und Kosten spart.

Mit effizienteren Serviceeinsätzen können bis zu 60 Prozent der Service-Kosten gespart werden und die Kundenzufriedenheit erhöht werden. Falls der Wechselrichter getauscht werden muss, liefern wir automatisch und innerhalb von drei Werktagen ein neues Gerät. Klappt das mal nicht so schnell wie erwartet, bietet SMA eine Geld-zurück-Garantie an.

Wie SMA Smart Connected Kunden vor versteckten Kosten schützt, zeigt das Rechenbeispiel, in dem wir eine Solaranlage mit und ohne Smart Connected in Deutschland vergleichen:

  • Durchschnittliche, tägliche PV-Anlagenleistung: 18kWh
  • Eigenverbrauchsrate: 30% (5,4 kWh/Tag)
  • Stromtarif bei Netzbezug: 0,295€/kWh
  • Einspeisevergütung: 0,118€/kWh (Stand Oktober 2018)
  • Feststellung erhöhter Stromkosten: 30 Tage
Standard System ohne Monitoring SMA Smart Connected System
Tage bis zur Fehlererkennung 1 30*
Tage bis zum Regelbetrieb 5 7**
Anfahrten des Installateurs 1 2**
Entgangene Einspeisung 108 kWh

(6 Tage x 18kWh/Tag)

666 kWh
(37 Tage x 18 kWh/Tage)
Entgangene Einspeisevergütung 12,74 €
(108 kWh x 0,118€/kWh)
78,59 €
(666 kWh x 0.118€/kWh)
Erhöhter Netzbezug 32,4 kWh
(6 Tage x 5,4 kWh/Tag)
199,8 kWh
(37 Tage x 5,4 kWh/Tag)
Zusätzliche Kosten durch Netzbezug 9,56 €
(32,4 kWh x 0,295€/kWh)
58,94 €
(199,8 kWh x 0.295€/kWh)
Mehrkosten durch Anlagenstillstand 22,30 € 137,53 €
Gesamtersparnis durch Smart Connected 115,23 €

* Aufgrund einer Störung läuft der Wechselrichter am ersten Tag des Rechnungszeitraums nicht. Die erhöhte Stromrechnung macht den Anlagenbesitzer erst nach 30 Tagen auf die Störung aufmerksam
** Der Installateur muss zur PV-Anlage fahren, um die Ursache der Störung herauszufinden. Erst bei der zweiten Anfahrt kann die PV-Anlage mit dem bis dahin beschafften Austauschgerät wieder in Stand gesetzt werden.

Das Beispiel dient nur zur Veranschaulichung und basiert auf den beschriebenen Voraussetzungen. Unter anderen Voraussetzungen kann das dargestellte Ergebnis abweichen.

SMA Smart Connected steht für minimalen Aufwand und maximale Solarerträge. Es ist unser Qualitätsversprechen: bis zu 60 Prozent Service-Kosten sparen und bei Kunden mit Service-Qualität und höchsten Solarerträgen punkten.

 

Seit 2016 bietet SMA in seinen Wechselrichtern den kostenfreien Service SMA Smart Connected. Er wurde erstmals mit dem Sunny Boy 3.0–5.0 eingeführt und hat sich inzwischen in vielen Neugeräten etabliert. Die neueste Geräte-Familie ist der Sunny Tripower 3.0–6.0 – und auch Wechselrichter für gewerbliche Anlagen werden künftig mit dem Service ausgestattet.

Weitere Infos

Hier erfahrt ihr, wie clevere Installateure komplexe Abläufe vereinfachen und Aufwände für Standardtätigkeiten reduzieren können:

Over the past two years, on a timetable similar to that of the IPCC 1.5°C report, the Shell scenario team has been working towards the launch of the Sky scenario, which took place a few months ago. Sky is based around the principal goal of the Paris Agreement, i.e. limiting the rise in surface temperature to well below 2°C. The exact definition of ‘well below’ is open to discussion, but in Sky the outcome sees warming limited to 1.75°C (in 2100 with a 50% chance), which can be interpreted as an 85% chance of being below 2°C.

As discussed at length in the Sky publication, the emissions management task that underpins this outcome is extraordinarily rapid and comprehensive in that it must touch every aspect of the energy system and even extend beyond that into industrial greenhouse gases, agriculture and land use change. While there is a great deal of discussion about energy transitions in society, much of it focuses on the deployment of renewable energy for electricity generation and more recently the extent to which electric passenger cars will permeate the global market. While these are both important sectors, they do not represent a complete picture of the transition or emissions.

In the Sky scenario, electricity is largely decarbonised by 2050 and passenger car sales are almost entirely EV by the same year, but the journey is just beginning in 2050 for other parts of the energy system. For example, 2050 is the first year in which hydrogen appears in the Sky dataset for aviation; up until that point aviation is entirely hydrocarbon based, albeit some of this is in the form of biofuels. Even passenger car gasoline use continues well past 2050 because of the large stock of vehicles in society. These are not easily displaced and a long but shrinking tail of continued use stretches into the 22nd century.

Long tails will be a feature of the energy transition this century and cannot be easily dealt with. Even today in the United Kingdom, it is still possible to see sacks of coal being delivered for home heating, a practice that most people think vanished decades ago. These long tails will add up and in Sky, come the end of the century, continued global coal, oil and gas use is not that different to the 1960s, although it is in steady decline. The difference is that carbon capture and storage, in some form, is used to manage the emissions impact.

At the start of the transition the story has many similarities but turned upside down. For example, solar PV first appeared in the 1970s, even on calculators, but it then took 40 years for solar PV to reach 1% of global electricity generation. In Sky, we don’t see hydrogen appearing in heavy industry as an energy source until the 2050s, because it hardly exists today. In the metallurgical sector, there are plans for a first demonstration of hydrogen smelting but shifting to large scale commercial deployment will likely take 20-30 years, at best.

Against this background comes the IPCC Special Report on 1.5°C (IPCC SR15), released on October 8th in Korea, after the final meeting of the authors. Not surprisingly, it calls for an extraordinarily rapid transition, with emissions falling sharply from 2020 in the P1, P2 and P3 type pathways (IPCC SR15 archetype pathways). The Shell Sky scenario is referenced in the IPCC SR15 report (see chart below) given the success it demonstrates in limiting warming, but is called ‘ a delayed action pathway relative to others’, simply because emissions don’t show a clear downward trend until the late 2020s (more like a P4 pathway). After that, transition proceeds rapidly.

SR15 Chart Including Sky
It is right that the climate science community should call for a sharp reduction in emissions as that is the lowest risk pathway for limiting warming, but such an outcome would require all of the policies in place by 2020 that Sky has posited could develop by 2030. For example, Sky sees carbon pricing implemented globally by 2030 with prices around $40 per ton of CO2 (a range of $25 to $60). In 2018 carbon pricing in some form covers less than a quarter of global activities and the level ranges from $5 to $30, with a few exceptions at higher levels.
Graph 10

The Sky publication also includes a sensitivity which sees the 1.5°C goal reached (i.e. surface temperature warming below 1.5°C in 2100 with a 50% probability). But this outcome is not achieved in Sky by simply speeding up the energy transition; Sky already represents the fastest real-world transition that appears possible today together with a relatively short capacity building period, i.e. the time it takes to implement robust policy frameworks globally. Rather, an additional measure is incorporated in the form of large scale reforestation, which introduces an increasing carbon sink from the early 2030s. The scale of that is significant and equivalent to increasing global forest cover by an area the size of Brazil over the coming decades. The use of such a carbon sink brings forward net zero emissions by about a decade to 2060, or 30 years after emissions start falling in Sky. IPCC SR15 recommends that emissions fall from 2020 and reach net zero by 2050, also a 30-year gap.

The total carbon budget in Sky from 2018 through to 2100, a measure used in IPCC SR15, is 800 Gt CO2. This slightly exceeds the IPCC mid-range budget (the 50 percentile in transient climate response to cumulative emissions or TCRE for 1.5°C, Table 2.2 in the report) of 770 Gt. IPCC SR15 notes that budget estimations contain considerable uncertainty, including uncertainty related to overshoot pathways, of which Sky is one. SR15 notes that if these budgets are exceeded and the use of sinks is envisaged to return cumulative CO2 emissions to within the carbon budget at a later point in time, additional uncertainties apply because the TCRE is different under increasing and decreasing atmospheric CO2 concentrations due to ocean thermal and carbon-cycle inertia. This asymmetrical behaviour makes carbon budgets path dependent in case of a budget and/or temperature overshoot. Although potentially large for scenarios with large overshoot, this path-dependence of carbon budgets has not been well quantified for 1.5°C- and 2°C-consistent scenarios and as such remains an important knowledge gap.

The short story here is that the IPCC SR15 has set out a formidable challenge for society, with an accelerated timetable to minimise uncertainty. While Sky takes a different approach to the feasible rates of transition to that set out by IPCC, it clearly demonstrates that a possible pathway forward exists.

Advertisement

Translator

Advertisement
Advertisement

SolarQuarter Tweets

Follow Us For Latest Tweets

SolarQuarter Recognizing Wind Industry's Top Players at India Wind Energy Excellence Awards 2018, New Delhi - https://t.co/fBepiseV6T
About 4 hours ago
SolarQuarter Announcing India Green Finance Awards_ Nominations Now Open, 1 - 2 November 2018, Mumbai - https://t.co/TEczH7B2Ww
Monday, 15 October 2018 13:53
SolarQuarter Cleantech Investment & Finance Week 2018_ EMobility & Renewable Energy, 1-2 November 2018, Mumbai_Register Now - https://t.co/z6ldlUXDE9
Friday, 12 October 2018 04:39

Advertisement