Yogesh Surendranath Wants To Decarbonize Our Energy Systems

0
961

Electricity plays many roles in our lives, from lighting our homes to powering the technology and appliances we rely on every day. Electricity can also have a major impact at the molecular scale, by powering chemical reactions that generate useful products.

Working at that molecular level, MIT chemistry professor Yogesh Surendranath harnesses electricity to rearrange chemical bonds. The electrochemical reactions he is developing hold potential for processes such as splitting water into hydrogen fuel, creating more efficient fuel cells, and converting waste products like carbon dioxide into useful fuels.

โ€œAll of our research is about decarbonizing the energy ecosystem,โ€ says Surendranath, who recently earned tenure in MITโ€™s Department of Chemistry and serves as the associate director of the Carbon Capture, Utilization, and Storage Center, one of the Low-Carbon Energy Centers run by the MIT Energy Initiative (MITEI).

Although his work has many applications in improving energy efficiency, most of the research projects in Surendranathโ€™s group have grown out of the labโ€™s fundamental interest in exploring, at a molecular level, the chemical reactions that occur between the surface of an electrode and a liquid.

โ€œOur goal is to uncover the key rate-limiting processes and the key steps in the reaction mechanism that give rise to one product over another, so that we can, in a rational way, control a material’s properties so that it can most selectively and efficiently carry out the overall reaction,โ€ he says.

Energy conversion

Born in Bangalore, India, Surendranath moved to Kent, Ohio, with his parents when he was 3 years old. Bangalore and Kent happen to have the worldโ€™s leading centers for studying liquid crystal materials, the field that Surendranathโ€™s father, an organic chemist, specialized in.

Also Read  Statkraft Commissions Germanyโ€™s Largest Solar-Battery Hybrid Plant Under EEG

โ€œMy dad would often take me to the laboratory, and although my parents encouraged me to pursue medicine, I think my interest in science and chemistry probably was sparked at an early age, by those experiences,โ€ Surendranath recalls.

Although he was interested in all of the sciences, he narrowed his focus after taking his first college chemistry class at the University of Virginia, with a professor named Dean Harman. He decided on a double major in chemistry and physics and ended up doing research in Harmanโ€™s inorganic chemistry lab.

After graduating from UVA, Surendranath came to MIT for graduate school, where his thesis advisor was then-MIT professor Daniel Nocera. With Nocera, he explored using electricity to split water as a way of renewably generating hydrogen. Surendranathโ€™s PhD research focused on developing methods to catalyze the half of the reaction that extracts oxygen gas from water.

He got even more involved in catalyst development while doing a postdoctoral fellowship at the University of California at Berkeley. There, he became interested in nanomaterials and the reactions that occur at the interfaces between solid catalysts and liquids.

โ€œThat interface is where a lot of the key processes that are involved in energy conversion occur in electrochemical technologies like batteries, electrolyzers, and fuel cells,โ€ he says.

In 2013, Surendranath returned to MIT to join the faculty, at a time when many other junior faculty members were being hired.

Also Read  European Energy Advances One Of Australiaโ€™s Largest Solar Developments With 1.1 GW Approval

โ€œOne of the most attractive features of the department is its balanced composition of early career and senior faculty. This has created a nurturing and vibrant atmosphere that is highly collaborative,โ€ he says. โ€œBut more than anything else, it was the phenomenal students at MIT that drew me back. Their intensity and enthusiasm is what drives the science.โ€

Fuel decarbonization

Among the many electrochemical reactions that Surendranathโ€™s lab is trying to optimize is the conversion of carbon dioxide to simple chemical fuels such as carbon monoxide, ethylene, or other hydrocarbons. Another project focuses on converting methane that is burned off from oil wells into liquid fuels such as methanol.

โ€œFor both of those areas, the idea is to convert carbon dioxide and low-carbon feedstocks into commodity chemicals and fuels. These technologies are essential for decarbonizing the chemistry and fuels sector,โ€ Surendranath says.

Other projects include improving the efficiency of catalysts used for water electrolysis and fuel cells, and for producing hydrogen peroxide (a versatile disinfectant). Many of those projects have grown out of his studentsโ€™ eagerness to chase after difficult problems and follow up on unexpected findings, Surendranath says.

โ€œThe true joy of my time here, in addition to the science, has been about seeing students that I’ve mentored grow and mature to become independent scientists and thought leaders, and then to go off and launch their own independent careers, whether it be in industry or in academia,โ€ he says. โ€œThat role as a mentor to the next generation of scientists in my field has been extraordinarily rewarding.โ€

Also Read  JinkoSolar Signs 2 GW Tiger Neo 3.0 Module Supply Agreement with China Energy Engineering Corporation for Saudi Arabia Project

Although they take their work seriously, Surendranath and his students like to keep the mood light in their lab. He often brings mangoes, coconuts, and other exotic fruits in to share, and enjoys flying stunt kites โ€” a type of kite that has multiple lines, allowing them to perform acrobatic maneuvers such as figure eights. He can also occasionally be seen making balloon animals or blowing extremely large soap bubbles.

โ€œMy group has really cultivated an extraordinarily positive, collaborative, uplifting environment where we go after really hard problems, and we have a lot of fun along the way,โ€ Surendranath says. โ€œI feel blessed to work with people who have invested so much in the research effort and have built a culture that is such a pleasure to work in every day.โ€


Discover more from SolarQuarter

Subscribe to get the latest posts sent to your email.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.